Menu
×
   ❮   
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

SciPy Interpolation


What is Interpolation?

Interpolation is a method for generating points between given points.

For example: for points 1 and 2, we may interpolate and find points 1.33 and 1.66.

Interpolation has many usage, in Machine Learning we often deal with missing data in a dataset, interpolation is often used to substitute those values.

This method of filling values is called imputation.

Apart from imputation, interpolation is often used where we need to smooth the discrete points in a dataset.


How to Implement it in SciPy?

SciPy provides us with a module called scipy.interpolate which has many functions to deal with interpolation:


1D Interpolation

The function interp1d() is used to interpolate a distribution with 1 variable.

It takes x and y points and returns a callable function that can be called with new x and returns corresponding y.

Example

For given xs and ys interpolate values from 2.1, 2.2... to 2.9:

from scipy.interpolate import interp1d
import numpy as np

xs = np.arange(10)
ys = 2*xs + 1

interp_func = interp1d(xs, ys)

newarr = interp_func(np.arange(2.1, 3, 0.1))

print(newarr)

Result:


  [5.2  5.4  5.6  5.8  6.   6.2  6.4  6.6  6.8]

Try it Yourself »

Note: that new xs should be in same range as of the old xs, meaning that we can't call interp_func() with values higher than 10, or less than 0.



Spline Interpolation

In 1D interpolation the points are fitted for a single curve whereas in Spline interpolation the points are fitted against a piecewise function defined with polynomials called splines.

The UnivariateSpline() function takes xs and ys and produce a callable funciton that can be called with new xs.

Piecewise function: A function that has different definition for different ranges.

Example

Find univariate spline interpolation for 2.1, 2.2... 2.9 for the following non linear points:

from scipy.interpolate import UnivariateSpline
import numpy as np

xs = np.arange(10)
ys = xs**2 + np.sin(xs) + 1

interp_func = UnivariateSpline(xs, ys)

newarr = interp_func(np.arange(2.1, 3, 0.1))

print(newarr)

Result:


  [5.62826474 6.03987348 6.47131994 6.92265019 7.3939103  7.88514634
   8.39640439 8.92773053 9.47917082]

Try it Yourself »

Interpolation with Radial Basis Function

Radial basis function is a function that is defined corresponding to a fixed reference point.

The Rbf() function also takes xs and ys as arguments and produces a callable function that can be called with new xs.

Example

Interpolate following xs and ys using rbf and find values for 2.1, 2.2 ... 2.9:

from scipy.interpolate import Rbf
import numpy as np

xs = np.arange(10)
ys = xs**2 + np.sin(xs) + 1

interp_func = Rbf(xs, ys)

newarr = interp_func(np.arange(2.1, 3, 0.1))

print(newarr)

Result:


  [6.25748981  6.62190817  7.00310702  7.40121814  7.8161443   8.24773402
   8.69590519  9.16070828  9.64233874]

Try it Yourself »


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
[email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
[email protected]

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.